Psychiatric Disorders and Acute Aortic Dissection in Cardiac Surgery: Mid-term Follow-up Analysis

Antonio Pellegrino, MD1, Paolo Nardi, MD, PhD1*, Francesco Bianchi, MD2, Francesca D’Auria, MD1, Piero Caporali, MD2, Marco Russo, MD1, Guglielmo Saitto, MD1, Romel Mani, MD1, Alberto Siracusano, MD2, Luigi Chiariello, MD1

Abstract
The aim of this study was to analyze the relationship between acute aortic dissection (AAD) and existing psychiatric disorders (PD), and the impact of PD postoperatively and at mid-term follow-up. From March 2005 to October 2013 210 consecutive patients underwent surgery for AAD. Of them 51 patients underwent psychiatric consultation postoperatively. In 24 patients (47%) a definitive diagnosis of PD (Group PD) was made in agreement of DSM-IV criteria: major depression (n=10), anxious-depressive syndrome (n=4), bipolar disorder type 2 (n=5), panic attacks (n=2), paranoid schizophrenia (n=1), anxiety (n=2). Clinical manifestations of PD including delirium, persistent spatiotemporal disorientation, psychomotor agitation were evident in 19 patients (79%) in PD vs. 4 (14.8%) in non-PD patients (P<0.0001). Hypothermic circulatory arrest was not found as predictor for postoperative psychiatric clinical manifestations. Our findings suggest a strong relationship between PD and AAD. Treatment of AAD for patients affected by PD seems to represent the first step to detect their psychiatric disorder and to start a correct medical therapy.

Keywords — Acute Aortic Dissection, Psychiatric Disorders, Aortic Surgery.

I. INTRODUCTION

In the last years a relationship between psychiatric disorders (PD) and ischemic cardiovascular disease has been clearly shown.1-3

Depression is recognized as an independent predictor for cardiovascular mortality in the short-term period following myocardial infarction and is associated with increased cardiovascular events.5-6

Negative effects of depression have been reported also during follow-up in patients operated of coronary artery bypass grafting.7-10 Behavioral changes, lack of trust of the psychiatric patient in medical treatment, pathophysiological alterations of the autonomic nervous system and of the hypothalamic-pituitary-adrenal axis have been advocated as possible causes of the association between PD and ischemic heart disease.11-13

On the contrary, little is known about a possible relationship between acute aortic dissection (AAD) and PD. AAD is a catastrophic cardiovascular syndrome; when the ascending aorta is involved by dissection the mortality at one month is about 90%.14-15 Hypertension, genetic predisposition, and the presence of inherited disorders of connective (Marfan and Ehlers-Danlos Syndromes), are recognized as main risk factors for the development of this acute pathology. Few studies have analyzed the presence of behavioral risk factors like the abuse of cocaine or amphetamines in patients affected by AAD,16-18 but a clear relationship between PD and AAD has not been investigated.

Clinical practice on patients admitted with a AAD diagnosis and surgically treated at the Cardiac Surgery Unit of the Tor Vergata University Policlinic has suggested that these patients constituted a particularly delicate group in terms of psychical status. Moreover, we observed that psychiatric complications such as postoperative delirium, spatiotemporal dissociation and psychomotor agitation were particularly frequent, resulting in the need of psychiatric treatment in the postoperative period. These findings have suggested the existence of a possible relation between PD and AAD, similar to that already reported for ischemic heart disease.

Aim of the current study was to retrospectively detect the relation between PD and AAD, define the psychological profile of patients treated for AAD and analyze the impact of PD postoperatively and at mid-term follow-up.

Conflict of Interest: none.
From1Cardiac Surgery Unit and 2Psychiatric Unit, Tor Vergata University Policlinic, Rome, Italy.
*Corresponding Author: pa.nardi4@libero.it
II. METHODS

From January 2005 to October 2013 at the Cardiac Surgery Unit of the Tor Vergata University Policlinic, 210 patients were consecutively operated for Type A AAAD. Mortality rate, as recorded at 30 days, was 26% (55/210). Among the survivors 51 patients (mean age 59.2 ± 13.2 years, range 20-79 years; 38 males), who represented the object of our study, underwent psychiatric consultation for evaluation of their psychiatric profile in the early postoperative period. Data were retrospectively analyzed. Diagnosis and type of PD were established by psychiatrists according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, American Psychiatric Association, 1994 (DSM-IV).

All patients except two (96%) were affected by recognized arterial hypertension; smoking habit was recorded in 28 patients (55%). The incidence of the other risk factors for cardiovascular diseases, preoperative and intraoperative characteristics are reported in Table 1.

The study was approved by our local Institutional Review Board, which waived the need for patient consent.

Surgical procedures

Longitudinal median sternotomy was performed in all the cases. Cardiopulmonary bypass was started through arterial cannulation of the right axillary artery in 21 cases (41%), femoral artery in 18 (35%), ascending aorta in 12 (24%). Venous drainage was obtained by cannulation of the right atrium. Myocardial protection was achieved by administration of intermittent antegrade blood cardioplegia (600 ml the first dose, 400 ml the others every 25-30 minutes).

Ascending aorta +/- emiarch replacement was performed in 25 patients (49%), ascending aorta + total arch replacement in 10 (20%), Bentall procedure +/- emiarch replacement in 16 (31%).

In 31 patients (61%) circulatory arrest, moderate hypothermia (26-27°C) and selective antegrade cerebral perfusion were instituted if emiarch or total arch replacement was required.

Data collection

Diagnosis and type of PD were established by three psychiatrists according with criteria reported in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). Psychiatric therapy was administered or changed as required in presence of postoperative acute exacerbation of PD. Follow-up was completed in 50 patients (98%) and the mean duration was 33 ± 25 months. The health status of every patient was investigated during a 2-month period (November-December 2013). Need for in-hospital readmission for cardiovascular causes or for treatment of PD during follow-up was also recorded at the outpatient clinic visit or by telephone interview. Freedom form PD was defined as the absence of clinical manifestations of PD and when a specific therapy required for treatment of PD exacerbation was not necessary, except the use of anxiolytic drugs at low doses. During the immediate postoperative period or during follow-up specific therapy used for the treatment of major depression and anxious depressive syndrome or panic attacks was sertraline or paroxetine, for the treatment of anxious depressive syndrome and anxiety was also used alprazolam, for the treatment of bipolar disorder and schizophrenia was used quetiapine hydrochloride (seroquel).

Statistical analysis

Statistical analysis was performed with Stat View 4.5 (SAS Institute Inc, Abacus Concepts, Berkeley, CA). Student’s t test for continuous data and the χ² or Fisher’s exact test for categorical data were used. Seventeen preoperative and perioperative variables were analyzed including age, gender, arterial hypertension, smoking habit, family history, diabetes mellitus, dyslipidemia, obesity, substance abuse, presence and type of PD, cardiopulmonary bypass and aortic cross-clamp times, the need and the duration of circulatory arrest, type of surgical procedures, length of intensive care unit stay. Risk factors analysis to detect independent predictors for postoperative psychiatric manifestations was performed using univariate and Logistic Regression analysis. Freedom from PD during follow-up was expressed as mean values plus or minus 1 standard deviation, and computed by using the Kaplan-Meier method; the log-rank test was used to compare event-free survival among subgroups. All other continuous values were expressed as mean plus or minus 1 standard deviation of the mean. All P values less than 0.05 were considered statistically significant.

TABLE I

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>59 ± 13</td>
</tr>
<tr>
<td>Male gender, n. (%)</td>
<td>38 (74.5)</td>
</tr>
<tr>
<td>Hypertension, n. (%)</td>
<td>49 (96)</td>
</tr>
<tr>
<td>Smoking habit, n. (%)</td>
<td>28 (55)</td>
</tr>
<tr>
<td>Family history, n. (%)</td>
<td>10 (20)</td>
</tr>
<tr>
<td>Dyslipidemia, n. (%)</td>
<td>10 (20)</td>
</tr>
<tr>
<td>Diabetes mellitus, n. (%)</td>
<td>2 (3.9)</td>
</tr>
<tr>
<td>Obesity, n. (%)</td>
<td>13 (25.5)</td>
</tr>
<tr>
<td>Substance abuse, n. (%)</td>
<td>2 (3.9)</td>
</tr>
<tr>
<td>Ascending aorta +/- emiarch replacement, n. (%)</td>
<td>25 (49)</td>
</tr>
<tr>
<td>Ascending aorta + arch replacement, n. (%)</td>
<td>10 (20)</td>
</tr>
<tr>
<td>Bentall operation +/- arch replacement, n. (%)</td>
<td>16 (31)</td>
</tr>
<tr>
<td>Cardiopulmonary bypass time, minutes</td>
<td>152 ± 59</td>
</tr>
<tr>
<td>Aortic cross-clamp time, minutes</td>
<td>90 ± 39</td>
</tr>
<tr>
<td>Hypothermic arrest, n. (%)</td>
<td>31 (61)</td>
</tr>
<tr>
<td>Circulatory arrest time, minutes</td>
<td>32 ± 29</td>
</tr>
<tr>
<td>In-ICU stay, days</td>
<td>4 ± 2</td>
</tr>
</tbody>
</table>

ICU = intensive care unit
III. RESULTS

Psychiatric Features and Postoperative Results

In 29 patients (57%) a psychiatric alteration was reported in their medical history. Of them, however, postoperatively, a diagnosis of PD was definitively made in 24/51 patients (47%) (Group PD) on the basis of psychiatric consultation at our unit as: major depression (n = 10), adjustment disorder with depressed mood (anxious depressive syndrome) (n = 4), type 2 bipolar disorder (n = 5), panic attacks (n = 2), paranoid schizophrenia (n = 1), anxiety without a specific psychiatric diagnosis (n = 2) (Table 2). In the other five patients the reported psychiatric alterations in their history did not meet criteria of PD according to DSM-IV classifications.

Smoking habit was more frequent in Group PD (79%) vs. Group non-PD (33%) (P < .001); the incidence of the other cardiovascular risk factors were similar in both Groups.

Clinical postoperative manifestations of PD including delirium, persistent spatio-temporal disorientation, psychomotor agitation were evident in 19 patients (79%) in Group PD vs. 4 patients (14.8%) in Group non-PD (P < .0001).

The variables analyzed, as gender, sex, type of surgical procedure, duration of cardiopulmonary bypass and aortic cross clamp times, circulatory arrest, length of stay in intensive care unit were not identified as risk factors for postoperative psychiatric complications at the univariate analysis.

Postoperatively, two patients in Group non-PD experienced cerebral ischemic stroke.

Follow-up Results

During the follow-up neither deaths nor suicide attempts occurred, but one patient of Group PD with a postoperative psychiatric diagnosis of anxiety showed aggressive behaviour towards his wife. Only 6/23 patients of Group PD (1 patient of this Group was lost at follow-up) continued to be affected by PD requiring treatment: 2 patients remained affected by major depression, 1 by paranoid schizophrenia, 1 by type 2 bipolar disorder, 1 by panic attacks, and 1 by anxiety. Therefore, the incidence of PD requiring treatment decreased from 100% in the Group PD in the postoperative period to 26% (6/23) during follow-up (P < .0001). One patient in Group PD affected by major depression developed a primitive respiratory insufficiency requiring home oxygen therapy. The other patient affected by major depression experienced an ischemic stroke 4 months after operation. All the other patients in Group PD did not show acute clinical manifestations of PD; they were in psychiatric follow-up or required the use of anxiolytic drugs at low doses, only. Two more cases were affected by PD (major depression, n = 1, anxiety, n = 1) in Group non-PD. Therefore, freedom from PD requiring the need of psychiatric therapy at 1, 3 and 5 years was 85%, 78%, 47% in Group PD vs. 94%, 94%, 79% in Group non-PD (P = .02) (Figure 1).

Freedom from PD at 1, 3 and 5 years in patients who showed psychiatric complications in the early postoperative period in comparison with patients who did not developed psychiatric complications is reported in Figure 2.

IV. DISCUSSION

In our study, we retrospectively reviewed 51 patients

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>POSTOPERATIVE DIAGNOSIS OF PSYCHIATRIC DISORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group PD</td>
<td>(No. patients 24)</td>
</tr>
<tr>
<td>Major Depression, n. (%)</td>
<td>10 (41.6)</td>
</tr>
<tr>
<td>Anxious Depressive Syndrome, n. (%)</td>
<td>4 (16.7)</td>
</tr>
<tr>
<td>Type 2 bipolar disorder, n. (%)</td>
<td>5 (20.8)</td>
</tr>
<tr>
<td>Panic Attacks, n. (%)</td>
<td>2 (8.3)</td>
</tr>
<tr>
<td>Paranoid Schizophrenia, n. (%)</td>
<td>1 (4.2)</td>
</tr>
<tr>
<td>Anxiety, n. (%)</td>
<td>2 (8.3)</td>
</tr>
</tbody>
</table>
admitted directly to the cardiac operating room with diagnosis of AAD and treated under emergency. All the patients underwent during hospitalization in the postoperative period psychiatric evaluation aimed to highlight the presence of PD. We found a strong relation between PD and AAD: postoperatively in 47% of patients (n = 24, Group PD) a precise clinical syndrome was recognized by the consultant psychiatrists. In Group PD the incidence of postoperative psychiatric complications was about 80%. The major psychiatric disorders were major depression, anxiety-depressive syndrome and anxiety status, representing more than 70% of PD diagnosed in the postoperative period. This incidence of PD in patients affected by AAD is very high (2 to 10 times) in comparison with that observed for the general population (4-7%) and in patients with ischemic heart disease (15-30%).

Recently, an interesting correlation between panic disorders and endothelial dysfunction during myocardial ischemia has been investigated. Moreover, panic disorders and myocardial ischemia can coexist and aggravate the clinical manifestation of each disease.

In our clinical practice, in patients affected by cardiac diseases apart from AAD, the need for psychiatric consultation was rare. In fact, only 29 psychiatric consultations (5%) were required for 577 patients consecutively operated on in a 12-month period (January-December 2013). Moreover 2 patients, in whom initially diagnosis of PD was not made postoperatively, developed onset PD manifestations during follow-up. These findings seem to provide the evidence regarding our hypothesis of a strict relation between AAD and PD. The mechanisms potentially responsible for the association with acute aortic events may be related primary to pathophysiological alterations due to genetic polymorphisms of the autonomic nervous system, as found in the correlation between ischemic heart disease and PD, or secondary to the fact that psychiatric patients often do not take care of their health and do not control potential risk factors (i.e., they do not take drugs for treatment of arterial hypertension). Smith and coworkers found a strong relation between bipolar disorders and cardio-metabolic morbidity (i.e. thyroid disorders, chronic pulmonary disease, arterial hypertension, diabetes mellitus): patients affected by bipolar disorders were less likely than controls to access primary-care to treat hypertension or atrial fibrillation.

Similarly, Gladigau and Co-workers found a strong link between severe mental illness and high incidence (from 19% to 69%) of several risk factors for cardiovascular disease, such as smoking, obesity, overweight, hypertension, diabetes, dyslipidemia, metabolic syndrome.

In our study we found a significantly higher incidence of smokers in Group PD in comparison with Group non-PD (79% vs. 33%, \(P = .001 \)); moreover, although without a statistically significant difference, also obesity was more frequent in Group PD (29.2% vs. 22%, \(P = .57 \)).

During a mid-term follow-up, although freedom form PD remained significantly related to the presence of PD diagnosed postoperatively (Figures 1-2), we observed an important reduction of clinical psychiatric manifestations. In fact, only 6 patients of the 23 patients in Group PD (not including the patient lost during follow-up) continued to be affected by PD. In particular, a significant reduction of psychiatric manifestations was observed at follow-up for depressive or bipolar disorders in comparison with the immediate postoperative findings (2/23 vs. 19/24 patients, \(P < .001 \)).

The reason to justify the remission of psychiatric symptoms is not entirely clear: it would seem that hospitalization for surgery had a positive influence on the natural history of mental illness. Probably, the treatment of the aortic pathology for this group of patients has been the first step to recognize and treat both cardiovascular risk factors and psychiatric disease. During follow-up 1 patient experienced a cerebral stroke which aggravated the pre-existing major depression. Finally, it appears very important to emphasize the complete absence of suicides in this population during follow-up period. Our preliminary data would show that surgical intervention, albeit representing an important trauma, in combination with a proper diagnostic and therapeutic way for the control of psychiatric symptoms, had had a positive impact during the psychiatric status at follow-up.

Limitations of the study
Our observations relate to a small group of patients and the type of study is retrospective. Therefore, further investigation will be needed to corroborate these findings. However, it should be noted that the tested sample represented approximately 30% of survived patients after AAD surgery. Moreover, the results will need to be confirmed with an analysis of additional factors, i.e., genetic, biological and behavioral which could better explain and describe the underlying pathophysiology and the relation with AAD.

V. CONCLUSIONS
In conclusion our findings suggest a strong relationship between PD and AAD. Since the psychiatric conditions appeared to be comfortably stable after surgery, the treatment of AAD for patients affected by PD seems to represent a first step to detect psychiatric pathology and to start a correct medical therapy for a better control of mental health. Following these interesting preliminary results, the study is continuing in a prospective manner.

REFERENCES

